Sunday, March 17, 2019

Dow Jones Stock Index Analysis - part 8

Introduction

In this post, I am starting the definition of an ARMA-GARCH model for Dow Jones Industrial Average (DJIA) daily trade volume log-ratio.

Packages

The packages being used in this post series are herein listed.

suppressPackageStartupMessages(library(lubridate))
suppressPackageStartupMessages(library(fBasics))
suppressPackageStartupMessages(library(lmtest))
suppressPackageStartupMessages(library(urca))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(quantmod))
suppressPackageStartupMessages(library(PerformanceAnalytics))
suppressPackageStartupMessages(library(rugarch))
suppressPackageStartupMessages(library(FinTS))
suppressPackageStartupMessages(library(forecast))
suppressPackageStartupMessages(library(strucchange))
suppressPackageStartupMessages(library(TSA))

Getting Data

We upload the environment status.

load(file='DowEnvironment.RData')

Structural Breaks in Daily Trade Volume

In part 2, we already highlighted some level shifts occurring within the daily trade volume. Here is the plot we already commented in part 2.

plot(dj_vol)

Now we want to identify and date such level shifts. First we verify that a linear regression with constant mean is statistically significative.

lm_dj_vol <- lm(dj_vol ~ 1, data = dj_vol)
summary(lm_dj_vol)
## 
## Call:
## lm(formula = dj_vol ~ 1, data = dj_vol)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -193537268  -91369768  -25727268   65320232  698562732 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 201947268    2060772      98   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 113200000 on 3019 degrees of freedom

Such linear regression model is statistically significative, hence it makes sense to proceed on with the breakpoints structural identification with respect a constant value.

bp_dj_vol <- breakpoints(dj_vol ~ 1, h = 0.1)
summary(bp_dj_vol)
## 
##   Optimal (m+1)-segment partition: 
## 
## Call:
## breakpoints.formula(formula = dj_vol ~ 1, h = 0.1)
## 
## Breakpoints at observation number:
##                                             
## m = 1                                   2499
## m = 2           896                     2499
## m = 3       626     1254                2499
## m = 4   342 644     1254                2499
## m = 5   342 644     1219 1649           2499
## m = 6   320 622 924 1251 1649           2499
## m = 7   320 622 924 1251 1692      2172 2499
## m = 8   320 622 924 1251 1561 1863 2172 2499
## 
## Corresponding to breakdates:
##                                                              
## m = 1                                                        
## m = 2                                       0.296688741721854
## m = 3                     0.207284768211921                  
## m = 4   0.113245033112583 0.213245033112583                  
## m = 5   0.113245033112583 0.213245033112583                  
## m = 6   0.105960264900662 0.205960264900662 0.305960264900662
## m = 7   0.105960264900662 0.205960264900662 0.305960264900662
## m = 8   0.105960264900662 0.205960264900662 0.305960264900662
##                                                              
## m = 1                                                        
## m = 2                                                        
## m = 3   0.41523178807947                                     
## m = 4   0.41523178807947                                     
## m = 5   0.40364238410596  0.546026490066225                  
## m = 6   0.414238410596027 0.546026490066225                  
## m = 7   0.414238410596027 0.560264900662252                  
## m = 8   0.414238410596027 0.516887417218543 0.616887417218543
##                                            
## m = 1                     0.827483443708609
## m = 2                     0.827483443708609
## m = 3                     0.827483443708609
## m = 4                     0.827483443708609
## m = 5                     0.827483443708609
## m = 6                     0.827483443708609
## m = 7   0.719205298013245 0.827483443708609
## m = 8   0.719205298013245 0.827483443708609
## 
## Fit:
##                                                                          
## m   0         1         2         3         4         5         6        
## RSS 3.872e+19 2.772e+19 1.740e+19 1.547e+19 1.515e+19 1.490e+19 1.475e+19
## BIC 1.206e+05 1.196e+05 1.182e+05 1.179e+05 1.178e+05 1.178e+05 1.178e+05
##                        
## m   7         8        
## RSS 1.472e+19 1.478e+19
## BIC 1.178e+05 1.178e+05

It gives this plot.

plot(bp_dj_vol)

The minimum BIC is reached at breaks = 6.

Here is the plot of the DJIA daily trade volume with level shifts (red line).

bp_fit <- fitted(bp_dj_vol, breaks=6)
bp_fit_xts <- xts(bp_fit, order.by = index(dj_vol))
bb <- merge(bp_fit_xts, dj_vol)
colnames(bb) <- c("Level", "DJI.Volume")
plot(bb, lwd = c(3,1), col = c("red", "black"))

Here are the calendar dates when such level shifts occur.

bd <- breakdates(bp_dj_vol)
bd <- as.integer(nrow(dj_vol)*bd)
index(dj_vol)[bd]
## [1] "2008-04-10" "2009-06-22" "2010-09-01" "2011-12-16" "2013-07-22"
## [6] "2016-12-02"

See ref. [10] for further details about structural breaks.

Daily Trade Volume Log-ratio Model

As shown in part 2, the daily trade volume log ratio:

\[ v_{t}\ := ln \frac{V_{t}}{V_{t-1}} \]

is already available within our data environment. We plot it.

plot(dj_vol_log_ratio)

Outliers Detection

The Return.clean function within Performance Analytics package is able to clean return time series from outliers. Here below we compare the original time series with the outliers adjusted one.

dj_vol_log_ratio_outliersadj <- Return.clean(dj_vol_log_ratio, "boudt")
p <- plot(dj_vol_log_ratio)
p <- addSeries(dj_vol_log_ratio_outliersadj, col = 'blue', on = 1)
p

The prosecution of the analysis will be carried on with the original time series as a more conservative approach to volatility evaluation.

Correlation plots

Here below are the total and partial correlation plots.

acf(dj_vol_log_ratio)

pacf(dj_vol_log_ratio)

Above plots may suggest some ARMA(p,q) model with p and q > 0. That will be verified within the prosecution of the present analysis.

Unit root tests

We run the Augmented Dickey-Fuller test as available within the urca package. The no trend and no drift test flavor is run.

(urdftest_lag = floor(12* (nrow(dj_vol_log_ratio)/100)^0.25))
## [1] 28
summary(ur.df(dj_vol_log_ratio, type = "none", lags = urdftest_lag, selectlags="BIC"))
## 
## ############################################### 
## # Augmented Dickey-Fuller Test Unit Root Test # 
## ############################################### 
## 
## Test regression none 
## 
## 
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.51742 -0.13544 -0.02485  0.12006  1.98641 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## z.lag.1      -5.21571    0.25218 -20.682  < 2e-16 ***
## z.diff.lag1   3.59929    0.24637  14.609  < 2e-16 ***
## z.diff.lag2   3.14516    0.23796  13.217  < 2e-16 ***
## z.diff.lag3   2.78234    0.22809  12.198  < 2e-16 ***
## z.diff.lag4   2.41745    0.21700  11.140  < 2e-16 ***
## z.diff.lag5   2.14179    0.20472  10.462  < 2e-16 ***
## z.diff.lag6   1.88354    0.19168   9.826  < 2e-16 ***
## z.diff.lag7   1.66394    0.17781   9.358  < 2e-16 ***
## z.diff.lag8   1.41657    0.16304   8.688  < 2e-16 ***
## z.diff.lag9   1.19354    0.14771   8.080 9.31e-16 ***
## z.diff.lag10  1.00374    0.13207   7.600 3.95e-14 ***
## z.diff.lag11  0.88134    0.11634   7.575 4.75e-14 ***
## z.diff.lag12  0.74946    0.10027   7.474 1.02e-13 ***
## z.diff.lag13  0.60798    0.08399   7.239 5.73e-13 ***
## z.diff.lag14  0.48367    0.06732   7.185 8.46e-13 ***
## z.diff.lag15  0.36278    0.05108   7.102 1.53e-12 ***
## z.diff.lag16  0.21128    0.03470   6.088 1.29e-09 ***
## z.diff.lag17  0.07911    0.01833   4.315 1.65e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2576 on 2972 degrees of freedom
## Multiple R-squared:  0.7476, Adjusted R-squared:  0.746 
## F-statistic: 488.9 on 18 and 2972 DF,  p-value: < 2.2e-16
## 
## 
## Value of test-statistic is: -20.6822 
## 
## Critical values for test statistics: 
##       1pct  5pct 10pct
## tau1 -2.58 -1.95 -1.62

Based on reported test statistics compared with critical values, we reject the null hypothesis of unit root presence. See ref. [6] for further details about the Augmented Dickey-Fuller test.

ARMA model

We now determine the ARMA structure of our time series in order to run the ARCH effects test on the resulting residuals. That is in agreement with what outlined in ref. [4] $4.3.

We take advantage of auto.arima() function within forecast package (ref. [7]) to have an idea of what ARMA model to start with.

(auto_model_1 <- auto.arima(dj_vol_log_ratio, stepwise=FALSE))
## Series: dj_vol_log_ratio 
## ARIMA(3,0,2) with zero mean 
## 
## Coefficients:
##           ar1     ar2     ar3      ma1      ma2
##       -0.5266  0.3769  0.1459  -0.0896  -0.7812
## s.e.   0.0970  0.0401  0.0203   0.0968   0.0872
## 
## sigma^2 estimated as 0.0659:  log likelihood=-176.48
## AIC=364.96   AICc=364.99   BIC=401.03
coeftest(auto_model_1)
## 
## z test of coefficients:
## 
##      Estimate Std. Error z value  Pr(>|z|)    
## ar1 -0.526617   0.096988 -5.4297 5.644e-08 ***
## ar2  0.376906   0.040090  9.4014 < 2.2e-16 ***
## ar3  0.145902   0.020324  7.1787 7.039e-13 ***
## ma1 -0.089611   0.096788 -0.9258    0.3545    
## ma2 -0.781163   0.087159 -8.9626 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ma1 coefficient is not significative. Hence we try with the following ARMA(2,3) model.

(arma_model_2 <- arima(dj_vol_log_ratio, order=c(2,0,3), include.mean = FALSE))
## 
## Call:
## arima(x = dj_vol_log_ratio, order = c(2, 0, 3), include.mean = FALSE)
## 
## Coefficients:
##           ar1     ar2      ma1      ma2     ma3
##       -0.1802  0.6441  -0.4351  -0.8604  0.3596
## s.e.   0.0643  0.0454   0.0681   0.0493  0.0423
## 
## sigma^2 estimated as 0.0658:  log likelihood = -176.9,  aic = 363.79
coeftest(arma_model_2)
## 
## z test of coefficients:
## 
##      Estimate Std. Error  z value  Pr(>|z|)    
## ar1 -0.180233   0.064315  -2.8023  0.005073 ** 
## ar2  0.644104   0.045449  14.1721 < 2.2e-16 ***
## ma1 -0.435122   0.068126  -6.3870 1.692e-10 ***
## ma2 -0.860443   0.049282 -17.4595 < 2.2e-16 ***
## ma3  0.359564   0.042307   8.4990 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

All coefficients are significative and AIC is lower than the one of the first model. We then try with ARMA(1,2).

(arma_model_3 <- arima(dj_vol_log_ratio, order=c(1,0,2), include.mean = FALSE))
## 
## Call:
## arima(x = dj_vol_log_ratio, order = c(1, 0, 2), include.mean = FALSE)
## 
## Coefficients:
##          ar1      ma1     ma2
##       0.6956  -1.3183  0.3550
## s.e.  0.0439   0.0518  0.0453
## 
## sigma^2 estimated as 0.06598:  log likelihood = -180.92,  aic = 367.84
coeftest(arma_model_3)
## 
## z test of coefficients:
## 
##      Estimate Std. Error  z value  Pr(>|z|)    
## ar1  0.695565   0.043874  15.8537 < 2.2e-16 ***
## ma1 -1.318284   0.051787 -25.4557 < 2.2e-16 ***
## ma2  0.355015   0.045277   7.8409 4.474e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This model has the highest AIC among the set and all coefficients are significative.

We can also have a try with the eacf() function within the TSA package as further verification.

eacf(dj_vol_log_ratio)
## AR/MA
##   0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 x o o x x o o x o o x  o  o  o 
## 1 x x o x o o o x o o x  o  o  o 
## 2 x x x x o o o o o o x  o  o  o 
## 3 x x x x o o o o o o x  o  o  o 
## 4 x x x x x o o o o o x  o  o  o 
## 5 x x x x o o o o o o o  o  o  o 
## 6 x x x x x o x o o o o  o  o  o 
## 7 x x x x x o o o o o o  o  o  o

The upper left triangle with â€Å“O” as a vertex seems to be located somehow within {(1,2),(2,2),(1,3),(2,3)}, which represents the set of potential (p,q) values according to eacf function output. To remark that we prefer to consider parsimoniuos models, that is why we do not go too far as AR and MA orders.

We already verified ARMA models with (p,q) orders within the set {(3,2)(2,3)(1,2)}. Let us try {(2,2)(1,3)}

(arma_model_4 <- arima(dj_vol_log_ratio, order=c(2,0,2), include.mean = FALSE))
## 
## Call:
## arima(x = dj_vol_log_ratio, order = c(2, 0, 2), include.mean = FALSE)
## 
## Coefficients:
##          ar1      ar2      ma1     ma2
##       0.7174  -0.0096  -1.3395  0.3746
## s.e.  0.1374   0.0560   0.1361  0.1247
## 
## sigma^2 estimated as 0.06598:  log likelihood = -180.9,  aic = 369.8
coeftest(arma_model_4)
## 
## z test of coefficients:
## 
##       Estimate Std. Error z value  Pr(>|z|)    
## ar1  0.7173631  0.1374135  5.2205 1.785e-07 ***
## ar2 -0.0096263  0.0560077 -0.1719  0.863536    
## ma1 -1.3394720  0.1361208 -9.8403 < 2.2e-16 ***
## ma2  0.3746317  0.1247117  3.0040  0.002665 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ar2 coefficient is not significative.

(arma_model_5 <- arima(dj_vol_log_ratio, order=c(1,0,3), include.mean = FALSE))
## 
## Call:
## arima(x = dj_vol_log_ratio, order = c(1, 0, 3), include.mean = FALSE)
## 
## Coefficients:
##          ar1      ma1     ma2     ma3
##       0.7031  -1.3253  0.3563  0.0047
## s.e.  0.0657   0.0684  0.0458  0.0281
## 
## sigma^2 estimated as 0.06598:  log likelihood = -180.9,  aic = 369.8
coeftest(arma_model_5)
## 
## z test of coefficients:
## 
##       Estimate Std. Error  z value  Pr(>|z|)    
## ar1  0.7030934  0.0656902  10.7032 < 2.2e-16 ***
## ma1 -1.3253176  0.0683526 -19.3894 < 2.2e-16 ***
## ma2  0.3563425  0.0458436   7.7730 7.664e-15 ***
## ma3  0.0047019  0.0280798   0.1674     0.867    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ma3 coefficient is not significative.

As a conclusion, we keep both ARMA(1,2) and ARMA(2,3) as tentative mean models. We can now proceed on with ARCH effect tests.

ARCH effect Test

If ARCH effects are statistical significative for the residuals of our time series, a GARCH model is required.

We test the candidate mean model ARMA(2,3).

resid_dj_vol_log_ratio <- residuals(arma_model_2)
ArchTest(resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio))
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio)
## Chi-squared = 78.359, df = 12, p-value = 8.476e-12

Based on reported p-value, we reject the null hypothesis of no ARCH effects.

Let us have a look at the residual correlation plot too.

par(mfrow=c(1,2))
acf(resid_dj_vol_log_ratio)
pacf(resid_dj_vol_log_ratio)

We test the second candidate mean model, ARMA(1,2).

resid_dj_vol_log_ratio <- resid(arma_model_3)
ArchTest(resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio))
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio)
## Chi-squared = 74.768, df = 12, p-value = 4.065e-11

Based on reported p-value, we reject the null hypothesis of no ARCH effects.

Let us have a look at the residual correlation plots.

par(mfrow=c(1,2))
acf(resid_dj_vol_log_ratio)
pacf(resid_dj_vol_log_ratio)

To inspect asymmetries within the DJIA volume log-ratio, summary statistics and density plot are shown.

basicStats(dj_vol_log_ratio)
##              DJI.Volume
## nobs        3019.000000
## NAs            0.000000
## Minimum       -2.301514
## Maximum        2.441882
## 1. Quartile   -0.137674
## 3. Quartile    0.136788
## Mean          -0.000041
## Median        -0.004158
## Sum           -0.124733
## SE Mean        0.005530
## LCL Mean      -0.010885
## UCL Mean       0.010802
## Variance       0.092337
## Stdev          0.303869
## Skewness      -0.182683
## Kurtosis       9.463384

Negative skewness is reported.

plot(density(dj_vol_log_ratio))

As a result, also for daily trade volume log-ratio the eGARCH model will be proposed.

Saving the current enviroment for further analysis.

save.image(file='DowEnvironment.RData')

References

[1] Dow Jones Industrial Average [https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average]

[2] Skewness [https://en.wikipedia.org/wiki/Skewness]

[3] Kurtosis [https://en.wikipedia.org/wiki/Kurtosis]

[4] An introduction to analysis of financial data with R, Wiley, Ruey S. Tsay [https://www.wiley.com/en-us/An+Introduction+to+Analysis+of+Financial+Data+with+R-p-9780470890813]

[5] Time series analysis and its applications, Springer ed., R.H. Shumway, D.S. Stoffer [https://www.springer.com/gp/book/9783319524511]

[6] Applied Econometric Time Series, Wiley, W. Enders, 4th ed. [https://www.wiley.com/en-us/Applied+Econometric+Time+Series%2C+4th+Edition-p-9781118808566]

[7] Forecasting - Principle and Practice, Texts, R.J. Hyndman [https://otexts.org/fpp2/]

[8] Options, Futures and other Derivatives, Pearson ed., J.C. Hull[https://www.pearson.com/us/higher-education/product/Hull-Options-Futures-and-Other-Derivatives-9th-Edition/9780133456318.html]

[9] An introduction to rugarch package [https://cran.r-project.org/web/packages/rugarch/vignettes/Introduction_to_the_rugarch_package.pdf]

[10] Applied Econometrics with R, Achim Zeileis, Christian Kleiber - Springer Ed. [http://www.springer.com/la/book/9780387773162]

[11] GARCH modeling: diagnostic tests [https://logicalerrors.wordpress.com/2017/08/14/garch-modeling-conditional-variance-useful-diagnostic-tests/]

Disclaimer

Any securities or databases referred in this post are solely for illustration purposes, and under no regard should the findings presented here be interpreted as investment advice or a promotion of any particular security or source.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.