Working points analysis
Abstract
In this post I am going to analyse the {R, S} phase diagram in order to identify relevant working points. Among those, the following ones are of major interest:
- the minimum round-trip-time (R) working point
- the maximum transmission rate (S) working point
Furthermore, I will show some inefficiencies in the TCP sender process and analyse their major root causes. Ultimately, I will experiment some basic remedies and show how the behavior improved.
Analysis
I start as usual by loading the data produced by the TCP mathematical model simulation to work only with the records associated to the congestion avoidance steady state.
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(Rmisc))
suppressPackageStartupMessages(library(knitr))
suppressPackageStartupMessages(library(scales))
df <- read.csv("TCP_ea.csv", header=TRUE, stringsAsFactors = TRUE, sep=",")
df.ss <- subset(df, status == "ca_steadystate")
kable(head(df.ss,5))
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
860 | 17.18 | 13.18289 | 0.6556589 | 13.66977 | 20.81397 | 0.0216649 | 20.10633 | ca_steadystate | increase | low |
861 | 17.20 | 13.05330 | 0.6490631 | 13.47189 | 20.76025 | 0.0203492 | 20.11099 | ca_steadystate | increase | low |
862 | 17.22 | 12.92675 | 0.6424704 | 13.27411 | 20.70545 | 0.0190063 | 20.12038 | ca_steadystate | increase | high |
863 | 17.24 | 12.80440 | 0.6358840 | 13.07652 | 20.64957 | 0.0176362 | 20.13638 | ca_steadystate | increase | high |
864 | 17.26 | 12.68509 | 0.6293083 | 12.87925 | 20.59263 | 0.0162393 | 20.15719 | ca_steadystate | increase | high |
kable(tail(df.ss,5))
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
2497 | 49.92 | 27.41972 | 0.9893418 | 23.68025 | 21.86931 | 0.0463816 | 27.71512 | ca_steadystate | decrease | high |
2498 | 49.94 | 27.25502 | 0.9878185 | 23.63456 | 21.88293 | 0.0467328 | 27.59112 | ca_steadystate | decrease | high |
2499 | 49.96 | 27.08724 | 0.9862126 | 23.58638 | 21.89610 | 0.0470732 | 27.46593 | ca_steadystate | decrease | high |
2500 | 49.98 | 26.91647 | 0.9845232 | 23.53570 | 21.90881 | 0.0474025 | 27.33960 | ca_steadystate | decrease | high |
2501 | 50.00 | 26.74279 | 0.9827496 | 23.48249 | 21.92104 | 0.0477203 | 27.21221 | ca_steadystate | decrease | high |
During the congestion avoidance steady state, the {R, S} phase diagram is traversed multiple times. Hence, it is of interest to determine the cycle time period. In order to do that, I indentify the events whereby probability p value changes from zero to a value strictly greater than zero. Those events occur periodically as the phase diagram is being traversed.
findcycle <- function(df) {
cycle <- list()
for (i in 1:(nrow(df.ss)-1)) {
if (df.ss[i,"p"] == 0 && df.ss[i+1,"p"] > 0) {
cycle <- c(cycle, i)
}
}
cycle <- unlist(cycle)
cycle
}
(cycle <- findcycle(df.ss))
## [1] 693 1546
cycle.start <- cycle[1]
cycle.finish <- cycle[2]-1
cycle.interval <- seq(cycle.start, cycle.finish)
kable(df.ss[cycle.start,, drop=FALSE])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
1552 | 31.02 | 29.85692 | 0.9630124 | 22.89037 | 20.02084 | 0 | 31.00367 | ca_steadystate | decrease | low |
kable(df.ss[cycle.finish,, drop=FALSE])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
2404 | 48.06 | 29.82268 | 0.9618724 | 22.85617 | 19.9876 | 0 | 31.00482 | ca_steadystate | decrease | low |
df.cycle <- df.ss[cycle.interval,, drop=FALSE]
The minimum round trip time, \(R_{min}\), working point shall be labeled as A.
The maximum transmission speed, \(S_{max}\), shall be labeled as B.
Working point A is so determined:
R.min <- min(df.cycle$R)
df.R.min <- which(df.cycle$R == R.min)
S.A <- df.cycle[df.R.min, "S"]
kable(df.cycle[df.R.min,, drop=FALSE])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
1784 | 35.66 | 12.08607 | 0.4022561 | 6.067684 | 15.89964 | 0 | 30.04571 | ca_steadystate | increase | high |
Working point B is so determined:
S.max <- max(df.cycle$S)
df.S.max <- which(df.cycle$S == S.max)
R.B <- df.cycle[df.S.max, "R"]
kable(df.cycle[df.S.max,, drop=FALSE])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
1842 | 36.82 | 14.64805 | 0.4587836 | 7.763509 | 12.67531 | 0 | 31.92801 | ca_steadystate | decrease | low |
Now, I am going to plot again the phase diagram {R, S} while adding optimal working points annotations. The path from A to B is shown with blue color, the points A and B are marked with blue circles and the direction highlighted by a closed triangle shaped arrow.
p.col <- c("darkgreen", "yellow", "orange", "red")
phase.diagram <- ggplot(data = df, aes(x=R, y=S, color=p)) +
geom_path() +
scale_colour_gradientn(colours = p.col) +
geom_point(aes(x = R.min, y = S.A), size = 3, color = 'blue') +
geom_point(aes(x = R.B, y = S.max), size = 3, color = 'blue') +
annotate("text", x = R.min-0.02, y = S.A, label = "A") +
annotate("text", x = R.B, y = S.max+2, label = "B")
sub.df <- df.cycle[df.R.min:df.S.max,, drop=FALSE]
phase.diagram + geom_path(data = sub.df, aes(x = R, y = S), color = 'blue',
arrow = arrow(length = unit(0.1, "inches"), type = "closed"))
Ultimately, working points A and B can be so represented:
\[ \begin{equation} \begin{cases} A := \{R_{A}, S_{A}\} := \{R_{min}, S_{A}\} = \{0.4022561, 30.0457085\} \\ \\ B := \{R_{B}, S_{B}\} := \{R_{B}, S_{max}\} = \{0.4587836, 31.9280144\} \\ \end{cases} \end{equation} \]
The working point A can be prefererred for latency sensitive applications, such as interactive video/voice. The working point B can be preferred for bulk data oriented applications, not sensitive to latency, such as FTP file transfers/downloads, which requires to minimize the transfer time by maximizing transmission rate.
I am going to plot herein below the variation percentage of W, R, S with time along the path from A to B. The left plot shows increment variation percentage. The right plot shows variation percentage with respect the values at working point A.
df.cycle <- transform(df.cycle, W_var_perc = 100*c(NA,diff(W))/W,
R_var_perc = 100*c(NA,diff(R))/R,
S_var_perc = 100*c(NA,diff(S))/S)
values <- df.cycle[df.R.min:df.S.max, c("time", "W_var_perc", "R_var_perc", "S_var_perc")]
p1 <- ggplot(data=values) + ylab("percentage variation") +
theme(legend.title = element_blank()) +
geom_line(aes(x = time, y = W_var_perc, colour = "W_var_perc")) +
geom_line(aes(x = time, y = R_var_perc, colour = "R_var_perc")) +
geom_line(aes(x = time, y = S_var_perc, colour = "S_var_perc"))
W.A <- df.cycle[df.R.min, "W"]
R.A <- df.cycle[df.R.min, "R"]
S.A <- df.cycle[df.R.min, "S"]
df.cycle <- transform(df.cycle, W_var_perc = 100*(W-W.A)/W.A,
R_var_perc = 100*(R-R.A)/R.A,
S_var_perc = 100*(S-S.A)/S.A)
col.select <- setdiff(colnames(df.cycle), c("W_var_perc", "R_var_perc", "S_var_perc"))
values <- df.cycle[df.R.min:df.S.max, c("time", "W_var_perc", "R_var_perc", "S_var_perc")]
p2 <- ggplot(data=values) + ylab("percentage variation respect A") +
theme(legend.title = element_blank()) +
geom_line(aes(x = time, y = W_var_perc, colour = "W_var_perc")) +
geom_line(aes(x = time, y = R_var_perc, colour = "R_var_perc")) +
geom_line(aes(x = time, y = S_var_perc, colour = "S_var_perc"))
multiplot(p1, p2, cols=2)
It is rather evident that the transmission rate increment percentage collapses for further increments of the transmit window size while surpassing working point B. At the same time, there is a remarkable round-trip-time increase. There are no advantages in increasing the window size beyond working point B.
Additional relevants working points are defined as:
maximum round trip time working point C
minimum transmission rate working point D
Both represents inefficient working points, which do not provide any added value.
R.max <- max(df.cycle$R)
df.R.max <- which(df.cycle$R == R.max)
S.C <- df.cycle[df.R.max, "S"]
kable(df.cycle[df.R.max, col.select])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
1622 | 32.42 | 30.09978 | 1.004225 | 24.12674 | 21.49836 | 0.0369614 | 29.97315 | ca_steadystate | decrease | high |
S.min <- min(df.cycle$S)
df.S.min <- which(df.cycle$S == S.min)
R.D <- df.cycle[df.S.min, "R"]
kable(df.cycle[df.S.min, col.select])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
1717 | 34.32 | 13.46009 | 0.6625266 | 13.8758 | 20.80477 | 0.0213949 | 20.31631 | ca_steadystate | increase | low |
Based on above computation, the working point C and D are so determined:
\[ \begin{equation} \begin{cases} C := \{R_{C}, S_{C}\} := \{R_{max}, S_{C}\} = \{1.0042246, 29.9731524\} \\ \\ D := \{R_{D}, S_{D}\} := \{R_{D}, S_{min}\} = \{0.6625266, 20.3163068\} \\ \end{cases} \end{equation} \]
and the {R, S} phase diagram plot results as:
p.col <- c("darkgreen", "yellow", "orange", "red")
phase.diagram <- ggplot(data = df, aes(x=R, y=S, color=p)) +
geom_path() +
scale_colour_gradientn(colours = p.col) +
geom_point(aes(x = R.min, y = S.A), size = 3, color = 'blue') +
geom_point(aes(x = R.B, y = S.max), size = 3, color = 'blue') +
geom_point(aes(x = R.max, y = S.C), size = 3, color = 'red') +
geom_point(aes(x = R.D, y = S.min), size = 3, color = 'green') +
annotate("text", x = R.min-0.02, y = S.A, label = "A") +
annotate("text", x = R.B, y = S.max+2, label = "B") +
annotate("text", x = R.max+0.02, y = S.C, label = "C") +
annotate("text", x = R.D, y = S.min-2, label = "D")
sub.df <- df.cycle[df.R.min:df.S.max,, drop=FALSE]
phase.diagram + geom_path(data = sub.df, aes(x = R, y = S), color = 'blue',
arrow = arrow(length = unit(0.1, "inches"), type = "closed"))
summary(df.cycle[,c("W", "R", "q", "S")])
## W R q S
## Min. :10.99 Min. :0.4023 Min. : 6.068 Min. :20.32
## 1st Qu.:17.14 1st Qu.:0.5797 1st Qu.:11.390 1st Qu.:30.98
## Median :22.74 Median :0.7564 Median :16.691 Median :31.15
## Mean :22.05 Mean :0.7350 Mean :16.051 Mean :30.00
## 3rd Qu.:27.30 3rd Qu.:0.8996 3rd Qu.:20.988 3rd Qu.:31.45
## Max. :30.86 Max. :1.0042 Max. :24.127 Max. :31.93
Then I compute the congestion avoidance steady state cycle period length.
R.min.time <- df.cycle[df.R.min, c("time")]
S.max.time <- df.cycle[df.S.max, c("time")]
(time.A2B <- (S.max.time - R.min.time))
## [1] 1.16
time.cycle.start <- df.cycle[1, c("time")]
time.cycle.finish <- df.cycle[nrow(df.cycle), c("time")]
(cycle.period <- (time.cycle.finish - time.cycle.start))
## [1] 17.04
It is remarkable that the TCP working point sojourns in the path {A, B} only for 6.81% of the cycle time. That highlights how much inefficient is the overall packet transmission process. To further understand why it is so inefficient, three major considerations:
the TCP sender window increases beyond the point B without providing with any improvements in transmission rate or round trip time
the RED discarding threshold intervention comes in too late
the RED discarding probability is triggered by moving average (variable \(x\)) of the instantaneous queue length (variable \(q\)), hence \(x\) reaches the discarding threshold with some delay with respect to \(q\), as highlighted by the following plot
df.qx <- df.ss[,c("time", "q", "x")]
ggplot(data = df.qx) + geom_line(aes(x = time, y = q, color="queue")) +
geom_line(aes(x = time, y=x, color="moving average")) +
ggtitle("Queue length and moving average comparison")
About first issue, we aim to determine if increasing the TCP sender window size improves or not the TCP transmission rate, hence it is necessary to compare:
\[ \begin{equation} \begin{aligned} \dfrac{W_{0}}{R_{0}}\ \ \ \ with \ \ \ \ \dfrac{(W_{0} + \Delta W_{0})}{(R_{0}+\Delta R_{0})} \\ \end{aligned} \end{equation} \]
Considering:
\[ \begin{equation} \begin{cases} {R_{0}\ =\ D + \dfrac{Q_{0}}{C}} \\ \\ {\Delta R_{0} = \dfrac{\Delta W_{0}}{C}} \\ \end{cases} \end{equation} \]
and that fixed delay \(D\) can be thought as determined by a virtual amount of fixed queueing \(Q^{*}\), as such:
\[ \begin{equation} \begin{aligned} D = \dfrac{Q^{*}}{C} \\ \end{aligned} \end{equation} \]
after some algebra, it is found there is speed increase starting from \(W_{0}\) current window size, if:
\[ \begin{equation} \begin{aligned} W_{0}\ <\ (Q_{0}\ +\ Q^{*}) \\ \end{aligned} \end{equation} \]
otherwise the TCP window increase results with a decrease in its transmission rate.
Based on our simulation configuration data:
\[ \begin{equation} \begin{aligned} Q^{*} = D * C = 0.2 * 30 = 6 \\ \end{aligned} \end{equation} \]
If we want to have a RED discarding probability greater than zero beyond point B, we have to set
\[ \begin{equation} \begin{aligned} T_{min}\ = df.ss[df.S.max, "q"] \ = 13.2682353 \\ \end{aligned} \end{equation} \]
and have RED discarding policy being triggered by the instantaneous queue length in place of its moving average. That implies to have equation 11 (describing the RED discarding profile) work based upon instantaneous queue length, this way:
\[ \begin{equation} p(x) =\left\{ \begin{array}{@{}ll@{}} 0 & \text{if}\ q < T_{min} \\ 1 & \text{if}\ q > T_{max} \\ \dfrac{q-T_{min}}{T_{max}-T_{min}}& \text{if}\ T_{min}<= q <= T_{max} \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (eq.\ 11) \right. \end{equation} \]
About second issue, I re-run simulation with modified \(T_{min}\) equal to 13.2682353 and equation 11 updated as above. Code upates are herein shown.
param.init <- c(W0 = 2, # initial window size [packets],
SST = 10, # slow start threshold
C = 30, # link bandwidth [packets/s]
D = 0.2, # delay [s]
alpha = 0.0001, # EWMA constant
beta = 0.5, # TCP window decrease factor
delta = 0.000266, # sampling time [s]
Tmin = 13.26, # 20, # RED minimum threshold
Tmax = 60, # RED maximum threshold
Qmax = 80 # maximum buffer size
)
# equation 11
y5 <- drop_p(y[t,"q"], parms["Tmin"], parms["Tmax"])
After re-running TCP model simulation and generating a second csv file named as TCP_2.csv, I re-run the first step of exploratory analysis which identifies slow-start, congestion avoidance transient and steady-state to produce a corresponding TCP_2_ea.csv file that I am going to analyse and identify as simulation #2 (while simulation #1 is the one introduced in this first post series).
df_2 <- read.csv("TCP_2_ea.csv", header = TRUE, stringsAsFactors = TRUE, sep=",")
df_2.ss <- subset(df_2, status == "ca_steadystate")
(cycle <- findcycle(df_2.ss))
## [1] 693 1546
cycle.start <- cycle[1]
cycle.finish <- cycle[2]-1
cycle.interval <- seq(cycle.start, cycle.finish)
kable(df_2.ss[cycle.start,, drop=FALSE])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
1088 | 21.74 | 18.25944 | 0.5792239 | 11.37672 | 11.53596 | 0 | 31.52397 | ca_steadystate | increase | low |
kable(df_2.ss[cycle.finish,, drop=FALSE])
time | W | R | q | x | p | S | status | S_slope | S_slope_rate | |
---|---|---|---|---|---|---|---|---|---|---|
1940 | 38.78 | 17.88381 | 0.5678579 | 11.03574 | 11.577 | 0 | 31.49346 | ca_steadystate | increase | low |
df_2.cycle <- df_2.ss[cycle.interval,, drop=FALSE]
R_2.min <- min(df_2.cycle$R)
df_2.R.min <- which(df_2.cycle$R == R_2.min)
S_2.A <- df_2.cycle[df_2.R.min, "S"]
S_2.max <- max(df_2.cycle$S)
df_2.S.max <- which(df_2.cycle$S == S_2.max)
R_2.B <- df_2.cycle[df_2.S.max, "R"]
R_2.max <- max(df_2.cycle$R)
df_2.R.max <- which(df_2.cycle$R == R_2.max)
S_2.C <- df_2.cycle[df_2.R.max, "S"]
S_2.min <- min(df_2.cycle$S)
df_2.S.min <- which(df_2.cycle$S == S_2.min)
R_2.D <- df_2.cycle[df_2.S.min, "R"]
ggplot(data = df_2, aes(x=R, y=S, color=p)) +
geom_path() +
scale_colour_gradientn(colours = p.col) +
geom_point(aes(x = R_2.min, y = S_2.A), size = 3, color = 'blue') +
geom_point(aes(x = R_2.B, y = S_2.max), size = 3, color = 'blue') +
geom_point(aes(x = R_2.max, y = S_2.C), size = 3, color = 'red') +
geom_point(aes(x = R_2.D, y = S_2.min), size = 3, color = 'green') +
annotate("text", x = R_2.min-0.02, y = S_2.A, label = "A") +
annotate("text", x = R_2.B, y = S_2.max+2, label = "B") +
annotate("text", x = R_2.max+0.02, y = S_2.C, label = "C") +
annotate("text", x = R_2.D, y = S_2.min-2, label = "D")
(R_2.min.time <- df_2.cycle[df_2.R.min, c("time")])
## [1] 31.86
(S_2.max.time <- df_2.cycle[df_2.S.max, c("time")])
## [1] 21.98
Then I compute how long the working point sojourns between optimal working points A and B for this scenario.
# since R.2.min.time > S_2.max.time, B2A time computation is done
(time.B2A <- (R_2.min.time-S_2.max.time))
## [1] 9.88
time.cycle.start <- df_2.cycle[1, c("time")]
time.cycle.finish <- df_2.cycle[nrow(df_2.cycle), c("time")]
(cycle.period <- (time.cycle.finish - time.cycle.start))
## [1] 17.04
We can see now the TCP working point sojourns in the path {A, B} for 42% of the cycle time.
Again summaries and boxplots to compare both simulations results.
summary(df_2.cycle[,c("W", "R", "q", "S")])
## W R q S
## Min. :14.83 Min. :0.5276 Min. : 9.829 Min. :25.51
## 1st Qu.:16.34 1st Qu.:0.5529 1st Qu.:10.588 1st Qu.:28.78
## Median :18.34 Median :0.6072 Median :12.215 Median :31.18
## Mean :18.20 Mean :0.6069 Mean :12.208 Mean :29.98
## 3rd Qu.:20.06 3rd Qu.:0.6586 3rd Qu.:13.759 3rd Qu.:31.48
## Max. :21.28 Max. :0.6895 Max. :14.684 Max. :31.53
par(mfrow=c(2,2))
boxplot(df.cycle[,"W"], df_2.cycle[,"W"], names=c("sim#1", "sim#2"), col="lightgreen",
main = "Transmission Window Size W")
boxplot(df.cycle[,"R"], df_2.cycle[,"R"], names=c("sim#1", "sim#2"), col="lightgreen",
main = "Round Trip Time R")
boxplot(df.cycle[,"q"], df_2.cycle[,"q"], names=c("sim#1", "sim#2"), col="lightgreen",
main = "Queue Length q")
boxplot(df.cycle[,"S"], df_2.cycle[,"S"], names=c("sim#1", "sim#2"), col="lightgreen",
main = "Transmission Rate S")
We can observe how the queue length and round trip-time have been decreased. The minimum transmission rate value has been increased, even though the statistical dispersion of S value increased. The TCP sender window has been decreased and its statistical dispersion decreased.
Overall, both minimum threshold and instantaneous queue length changes have improved the overall process. There is still a delay the overtaking of point B is communicated back to the sender process due to the round-trip-time such notification takes to reach the source.
That can be further improved by having the TCP sender window size increments occur once per round-trip-time, as proposed for data center TCP (DCTCP).
Conclusions
Thanks to exploratory analysis taking advantage of phase diagrams, in particular, I was able to spot features and inefficiencies in the TCP sender process. Some of the remedies have been applied and the comparison with former performance has highlighted remarkable improvements. Sure what shown is just a basic scenario with respect the complexity of a more realistic one whereby multiple TCP connections share network resources in competitive fashion.